Assignment 3

1. If p is an odd degree polynomial with real coefficients, then show, without using fundamental theorem of algebra, that it has a real root.
2. Let $p(x)=\sum_{k=1}^{n} a_{k} x^{k}$ and $q(x)=\sum_{k=0}^{m} b_{k} x^{k}$. Suppose $p(x)=q(x)$ for all $x \in[a, b]$. Show, without using fundamental theorem of algebra, that $n=m$ and $a_{k}=b_{k}$.
3. Let $D=\{x \mid 0<x \leqslant 1\}$ and $f(x)=\frac{1}{x}$ defined on D. For every $a \in D$, let $L_{a}=\left\{x \in D| | f(x)-f(a) \left\lvert\,<\frac{1}{3}\right.\right\}$. Show that $\left\{L_{a} \mid a \in D\right\}$ covers D but there is no finite subcover.
4. Given the interval $[a, b]$, define $\alpha=\sup \{c \mid a \leqslant c<b$ and $[a, c]$ is compact $\}$. Show, without using Heine-Borel Theorem, that $\alpha=b$.
Hint: Use the definition of compactness.
5. If $\left\{K_{n}\right\}$ is a sequence of non-empty compact subsets of a metric space such that $K_{n} \supset K_{n+1}$ for all $n \in \mathbb{N}$, then show that $\cap_{1}^{\infty} K_{n} \neq \emptyset$.
